Files
gasket-driver/gasket_page_table.c
Leonid Lobachev 0dc5779dd7 staging: gasket: Update device virtual address comment
Add that number of page table entries and extended address bit offset
are configurable. Update example virtual address format to be more
consistent with typical usage.

Change-Id: I73f9674df74b6d8ee5ed6e5d95ab12dcc56e29cc
Signed-off-by: Nick Ewalt <nicholasewalt@google.com>
Signed-off-by: Todd Poynor <toddpoynor@google.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-23 22:43:12 +00:00

1411 lines
40 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Implementation of Gasket page table support.
*
* Copyright (C) 2018 Google, Inc.
*/
/*
* Implementation of Gasket page table support.
*
* This file assumes 4kB pages throughout; can be factored out when necessary.
*
* There is a configurable number of page table entries, as well as a
* configurable bit index for the extended address flag. Both of these are
* specified in gasket_page_table_init through the page_table_config parameter.
*
* The following example assumes:
* page_table_config->total_entries = 8192
* page_table_config->extended_bit = 63
*
* Address format:
* Simple addresses - those whose containing pages are directly placed in the
* device's address translation registers - are laid out as:
* [ 63 - 25: 0 | 24 - 12: page index | 11 - 0: page offset ]
* page index: The index of the containing page in the device's address
* translation registers.
* page offset: The index of the address into the containing page.
*
* Extended address - those whose containing pages are contained in a second-
* level page table whose address is present in the device's address translation
* registers - are laid out as:
* [ 63: flag | 62 - 34: 0 | 33 - 21: dev/level 0 index |
* 20 - 12: host/level 1 index | 11 - 0: page offset ]
* flag: Marker indicating that this is an extended address. Always 1.
* dev index: The index of the first-level page in the device's extended
* address translation registers.
* host index: The index of the containing page in the [host-resident] second-
* level page table.
* page offset: The index of the address into the containing [second-level]
* page.
*/
#include "gasket_page_table.h"
#include <linux/device.h>
#include <linux/file.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/pagemap.h>
#include <linux/vmalloc.h>
#include "gasket_constants.h"
#include "gasket_core.h"
/* Constants & utility macros */
/* The number of pages that can be mapped into each second-level page table. */
#define GASKET_PAGES_PER_SUBTABLE 512
/* The starting position of the page index in a simple virtual address. */
#define GASKET_SIMPLE_PAGE_SHIFT 12
/* Flag indicating that a [device] slot is valid for use. */
#define GASKET_VALID_SLOT_FLAG 1
/*
* The starting position of the level 0 page index (i.e., the entry in the
* device's extended address registers) in an extended address.
* Also can be thought of as (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)),
* or (12 + 9).
*/
#define GASKET_EXTENDED_LVL0_SHIFT 21
/*
* Number of first level pages that Gasket chips support. Equivalent to
* log2(NUM_LVL0_PAGE_TABLES)
*
* At a maximum, allowing for a 34 bits address space (or 16GB)
* = GASKET_EXTENDED_LVL0_WIDTH + (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)
* or, = 13 + 9 + 12
*/
#define GASKET_EXTENDED_LVL0_WIDTH 13
/*
* The starting position of the level 1 page index (i.e., the entry in the
* host second-level/sub- table) in an extended address.
*/
#define GASKET_EXTENDED_LVL1_SHIFT 12
/*
* Utilities for accessing flags bitfields.
*/
#define MASK(field) (((1u << field##_WIDTH) - 1) << field##_SHIFT)
#define GET(field, flags) (((flags) & MASK(field)) >> field##_SHIFT)
#define SET(field, flags, val) (((flags) & ~MASK(field)) | ((val) << field##_SHIFT))
#define FLAGS_STATUS_SHIFT 0
#define FLAGS_STATUS_WIDTH 1
#define FLAGS_DMA_DIRECTION_SHIFT 1
#define FLAGS_DMA_DIRECTION_WIDTH 2
/* Type declarations */
/* Valid states for a struct gasket_page_table_entry. */
enum pte_status {
PTE_FREE,
PTE_INUSE,
};
/*
* Mapping metadata for a single page.
*
* In this file, host-side page table entries are referred to as that (or PTEs).
* Where device vs. host entries are differentiated, device-side or -visible
* entries are called "slots". A slot may be either an entry in the device's
* address translation table registers or an entry in a second-level page
* table ("subtable").
*
* The full data in this structure is visible on the host [of course]. Only
* the address contained in dma_addr is communicated to the device; that points
* to the actual page mapped and described by this structure.
*/
struct gasket_page_table_entry {
/*
* Internal structure matches gasket_page_table_ioctl_flags.flags.
* NOTE: All fields should have a default value of 0. This ensures that
* the kernel will be backwards compatible with old drivers.
*/
u32 flags;
/*
* Index for alignment into host vaddrs.
* When a user specifies a host address for a mapping, that address may
* not be page-aligned. Offset is the index into the containing page of
* the host address (i.e., host_vaddr & (PAGE_SIZE - 1)).
* This is necessary for translating between user-specified addresses
* and page-aligned addresses.
*/
int offset;
/* Address of the page in DMA space. */
dma_addr_t dma_addr;
/* Linux page descriptor for the page described by this structure. */
struct page *page;
/*
* If this is an extended and first-level entry, sublevel points
* to the second-level entries underneath this entry.
*/
struct gasket_page_table_entry *sublevel;
};
/*
* Maintains virtual to physical address mapping for a coherent page that is
* allocated by this module for a given device.
* Note that coherent pages mappings virt mapping cannot be tracked by the
* Linux kernel, and coherent pages don't have a struct page associated,
* hence Linux kernel cannot perform a get_user_page_xx() on a phys address
* that was allocated coherent.
* This structure trivially implements this mechanism.
*/
struct gasket_coherent_page_entry {
/* Phys address, dma'able by the owner device */
dma_addr_t paddr;
/* Kernel virtual address */
u64 user_virt;
/* User virtual address that was mapped by the mmap kernel subsystem */
dma_addr_t kernel_virt;
/*
* Whether this page has been mapped into a user land process virtual
* space
*/
u32 in_use;
};
/*
* [Host-side] page table descriptor.
*
* This structure tracks the metadata necessary to manage both simple and
* extended page tables.
*/
struct gasket_page_table {
/* The config used to create this page table. */
struct gasket_page_table_config config;
/* The number of simple (single-level) entries in the page table. */
uint num_simple_entries;
/* The number of extended (two-level) entries in the page table. */
uint num_extended_entries;
/* Array of [host-side] page table entries. */
struct gasket_page_table_entry *entries;
/* Number of actively mapped kernel pages in this table. */
uint num_active_pages;
/* Device register: base of/first slot in the page table. */
u64 __iomem *base_slot;
/* Device register: holds the offset indicating the start of the
* extended address region of the device's address translation table.
*/
u64 __iomem *extended_offset_reg;
/* Device structure for the underlying device. Only used for logging. */
struct device *device;
/* PCI system descriptor for the underlying device. */
struct pci_dev *pci_dev;
/* Location of the extended address bit for this Gasket device. */
u64 extended_flag;
/* Mutex to protect page table internals. */
struct mutex mutex;
/* Number of coherent pages accessible thru by this page table */
int num_coherent_pages;
/*
* List of coherent memory (physical) allocated for a device.
*
* This structure also remembers the user virtual mapping, this is
* hacky, but we need to do this because the kernel doesn't keep track
* of the user coherent pages (pfn pages), and virt to coherent page
* mapping.
* TODO: use find_vma() APIs to convert host address to vm_area, to
* dma_addr_t instead of storing user virtu address in
* gasket_coherent_page_entry
*
* Note that the user virtual mapping is created by the driver, in
* gasket_mmap function, so user_virt belongs in the driver anyhow.
*/
struct gasket_coherent_page_entry *coherent_pages;
};
/* See gasket_page_table.h for description. */
int gasket_page_table_init(struct gasket_page_table **ppg_tbl,
const struct gasket_bar_data *bar_data,
const struct gasket_page_table_config *page_table_config,
struct device *device, struct pci_dev *pci_dev)
{
ulong bytes;
struct gasket_page_table *pg_tbl;
ulong total_entries = page_table_config->total_entries;
/*
* TODO: Verify config->total_entries against value read from the
* hardware register that contains the page table size.
*/
if (total_entries == ULONG_MAX) {
dev_dbg(device, "Error reading page table size. "
"Initializing page table with size 0\n");
total_entries = 0;
}
dev_dbg(device,
"Attempting to initialize page table of size 0x%lx\n",
total_entries);
dev_dbg(device,
"Table has base reg 0x%x, extended offset reg 0x%x\n",
page_table_config->base_reg,
page_table_config->extended_reg);
*ppg_tbl = kzalloc(sizeof(**ppg_tbl), GFP_KERNEL);
if (!*ppg_tbl) {
dev_dbg(device, "No memory for page table\n");
return -ENOMEM;
}
pg_tbl = *ppg_tbl;
bytes = total_entries * sizeof(struct gasket_page_table_entry);
if (bytes != 0) {
pg_tbl->entries = vzalloc(bytes);
if (!pg_tbl->entries) {
dev_dbg(device,
"No memory for address translation metadata\n");
kfree(pg_tbl);
*ppg_tbl = NULL;
return -ENOMEM;
}
}
mutex_init(&pg_tbl->mutex);
memcpy(&pg_tbl->config, page_table_config, sizeof(*page_table_config));
if (pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_NORMAL ||
pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_SIMPLE) {
pg_tbl->num_simple_entries = total_entries;
pg_tbl->num_extended_entries = 0;
pg_tbl->extended_flag = 1ull << page_table_config->extended_bit;
} else {
pg_tbl->num_simple_entries = 0;
pg_tbl->num_extended_entries = total_entries;
pg_tbl->extended_flag = 0;
}
pg_tbl->num_active_pages = 0;
pg_tbl->base_slot =
(u64 __iomem *)&bar_data->virt_base[page_table_config->base_reg];
pg_tbl->extended_offset_reg =
(u64 __iomem *)&bar_data->virt_base[page_table_config->extended_reg];
pg_tbl->device = get_device(device);
pg_tbl->pci_dev = pci_dev;
dev_dbg(device, "Page table initialized successfully\n");
return 0;
}
/*
* Check if a range of PTEs is free.
* The page table mutex must be held by the caller.
*/
static bool gasket_is_pte_range_free(struct gasket_page_table_entry *ptes,
uint num_entries)
{
int i;
for (i = 0; i < num_entries; i++) {
if (GET(FLAGS_STATUS, ptes[i].flags) != PTE_FREE)
return false;
}
return true;
}
/*
* Free a second level page [sub]table.
* The page table mutex must be held before this call.
*/
static void gasket_free_extended_subtable(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *pte,
u64 __iomem *slot)
{
/* Release the page table from the driver */
pte->flags = SET(FLAGS_STATUS, pte->flags, PTE_FREE);
/* Release the page table from the device */
writeq(0, slot);
if (pte->dma_addr)
dma_unmap_page(pg_tbl->device, pte->dma_addr, PAGE_SIZE,
DMA_TO_DEVICE);
vfree(pte->sublevel);
if (pte->page)
free_page((ulong)page_address(pte->page));
memset(pte, 0, sizeof(struct gasket_page_table_entry));
}
/*
* Actually perform collection.
* The page table mutex must be held by the caller.
*/
static void
gasket_page_table_garbage_collect_nolock(struct gasket_page_table *pg_tbl)
{
struct gasket_page_table_entry *pte;
u64 __iomem *slot;
/* XXX FIX ME XXX -- more efficient to keep a usage count */
/* rather than scanning the second level page tables */
for (pte = pg_tbl->entries + pg_tbl->num_simple_entries,
slot = pg_tbl->base_slot + pg_tbl->num_simple_entries;
pte < pg_tbl->entries + pg_tbl->config.total_entries;
pte++, slot++) {
if (GET(FLAGS_STATUS, pte->flags) == PTE_INUSE) {
if (gasket_is_pte_range_free(pte->sublevel,
GASKET_PAGES_PER_SUBTABLE))
gasket_free_extended_subtable(pg_tbl, pte,
slot);
}
}
}
/* See gasket_page_table.h for description. */
void gasket_page_table_garbage_collect(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_garbage_collect_nolock(pg_tbl);
mutex_unlock(&pg_tbl->mutex);
}
/* See gasket_page_table.h for description. */
void gasket_page_table_cleanup(struct gasket_page_table *pg_tbl)
{
/* Deallocate free second-level tables. */
gasket_page_table_garbage_collect(pg_tbl);
/* TODO: Check that all PTEs have been freed? */
vfree(pg_tbl->entries);
pg_tbl->entries = NULL;
put_device(pg_tbl->device);
kfree(pg_tbl);
}
/* See gasket_page_table.h for description. */
int gasket_page_table_partition(struct gasket_page_table *pg_tbl,
uint num_simple_entries)
{
int i, start;
mutex_lock(&pg_tbl->mutex);
if (num_simple_entries > pg_tbl->config.total_entries) {
mutex_unlock(&pg_tbl->mutex);
return -EINVAL;
}
gasket_page_table_garbage_collect_nolock(pg_tbl);
start = min(pg_tbl->num_simple_entries, num_simple_entries);
for (i = start; i < pg_tbl->config.total_entries; i++) {
if (GET(FLAGS_STATUS, pg_tbl->entries[i].flags) != PTE_FREE) {
dev_err(pg_tbl->device, "entry %d is not free\n", i);
mutex_unlock(&pg_tbl->mutex);
return -EBUSY;
}
}
pg_tbl->num_simple_entries = num_simple_entries;
pg_tbl->num_extended_entries =
pg_tbl->config.total_entries - num_simple_entries;
writeq(num_simple_entries, pg_tbl->extended_offset_reg);
mutex_unlock(&pg_tbl->mutex);
return 0;
}
EXPORT_SYMBOL(gasket_page_table_partition);
/*
* Return whether a host buffer was mapped as coherent memory.
*
* A Gasket page_table currently support one contiguous dma range, mapped to one
* contiguous virtual memory range. Check if the host_addr is within that range.
*/
static int is_coherent(struct gasket_page_table *pg_tbl, ulong host_addr)
{
u64 min, max;
/* whether the host address is within user virt range */
if (!pg_tbl->coherent_pages)
return 0;
min = (u64)pg_tbl->coherent_pages[0].user_virt;
max = min + PAGE_SIZE * pg_tbl->num_coherent_pages;
return min <= host_addr && host_addr < max;
}
/* Safely return a page to the OS. */
static bool gasket_release_page(struct page *page)
{
if (!page)
return false;
if (!PageReserved(page))
SetPageDirty(page);
put_page(page);
return true;
}
/*
* Get and map last level page table buffers.
*
* slots is the location(s) to write device-mapped page address. If this is a
* simple mapping, these will be address translation registers. If this is
* an extended mapping, these will be within a second-level page table
* allocated by the host and so must have their __iomem attribute casted away.
*/
static int gasket_perform_mapping(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *ptes,
u64 __iomem *slots, ulong host_addr,
uint num_pages, u32 flags,
int is_simple_mapping)
{
int ret;
ulong offset;
struct page *page;
dma_addr_t dma_addr;
ulong page_addr;
int i;
if (GET(FLAGS_DMA_DIRECTION, flags) == DMA_NONE) {
dev_err(pg_tbl->device, "invalid DMA direction flags=0x%lx\n",
(unsigned long)flags);
return -EINVAL;
}
for (i = 0; i < num_pages; i++) {
page_addr = host_addr + i * PAGE_SIZE;
offset = page_addr & (PAGE_SIZE - 1);
dev_dbg(pg_tbl->device, "%s i %d\n", __func__, i);
if (is_coherent(pg_tbl, host_addr)) {
u64 off =
(u64)host_addr -
(u64)pg_tbl->coherent_pages[0].user_virt;
ptes[i].page = NULL;
ptes[i].offset = offset;
ptes[i].dma_addr = pg_tbl->coherent_pages[0].paddr +
off + i * PAGE_SIZE;
} else {
ret = get_user_pages_fast(page_addr - offset, 1, 1,
&page);
if (ret <= 0) {
dev_err(pg_tbl->device,
"get user pages failed for addr=0x%lx, "
"offset=0x%lx [ret=%d]\n",
page_addr, offset, ret);
return ret ? ret : -ENOMEM;
}
++pg_tbl->num_active_pages;
ptes[i].page = page;
ptes[i].offset = offset;
/* Map the page into DMA space. */
ptes[i].dma_addr = dma_map_page(pg_tbl->device, page, 0, PAGE_SIZE,
GET(FLAGS_DMA_DIRECTION, flags));
dev_dbg(pg_tbl->device,
"%s i %d pte %p pfn %p -> mapped %llx\n",
__func__, i, &ptes[i],
(void *)page_to_pfn(page),
(unsigned long long)ptes[i].dma_addr);
if (dma_mapping_error(pg_tbl->device,
ptes[i].dma_addr)) {
dev_dbg(pg_tbl->device,
"%s i %d -> fail to map page %llx "
"[pfn %p phys %p]\n",
__func__, i,
(unsigned long long)ptes[i].dma_addr,
(void *)page_to_pfn(page),
(void *)page_to_phys(page));
/* clean up */
if (gasket_release_page(ptes[i].page))
--pg_tbl->num_active_pages;
memset(&ptes[i], 0, sizeof(struct gasket_page_table_entry));
return -EINVAL;
}
}
/* Make the DMA-space address available to the device. */
dma_addr = (ptes[i].dma_addr + offset) | GASKET_VALID_SLOT_FLAG;
if (is_simple_mapping) {
writeq(dma_addr, &slots[i]);
} else {
((u64 __force *)slots)[i] = dma_addr;
/* Extended page table vectors are in DRAM,
* and so need to be synced each time they are updated.
*/
dma_map_single(pg_tbl->device,
(void *)&((u64 __force *)slots)[i],
sizeof(u64), DMA_TO_DEVICE);
}
/* Set PTE flags equal to flags param with STATUS=PTE_INUSE. */
ptes[i].flags = SET(FLAGS_STATUS, flags, PTE_INUSE);
}
return 0;
}
/*
* Return the index of the page for the address in the simple table.
* Does not perform validity checking.
*/
static int gasket_simple_page_idx(struct gasket_page_table *pg_tbl,
u64 dev_addr)
{
return (dev_addr >> GASKET_SIMPLE_PAGE_SHIFT) &
(pg_tbl->config.total_entries - 1);
}
/*
* Return the level 0 page index for the given address.
* Does not perform validity checking.
*/
static ulong gasket_extended_lvl0_page_idx(struct gasket_page_table *pg_tbl,
u64 dev_addr)
{
return (dev_addr >> GASKET_EXTENDED_LVL0_SHIFT) &
(pg_tbl->config.total_entries - 1);
}
/*
* Return the level 1 page index for the given address.
* Does not perform validity checking.
*/
static ulong gasket_extended_lvl1_page_idx(struct gasket_page_table *pg_tbl,
u64 dev_addr)
{
return (dev_addr >> GASKET_EXTENDED_LVL1_SHIFT) &
(GASKET_PAGES_PER_SUBTABLE - 1);
}
/*
* Allocate page table entries in a simple table.
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_simple_entries(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
if (!gasket_is_pte_range_free(pg_tbl->entries +
gasket_simple_page_idx(pg_tbl, dev_addr),
num_pages))
return -EBUSY;
return 0;
}
/*
* Unmap and release mapped pages.
* The page table mutex must be held by the caller.
*/
static void gasket_perform_unmapping(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *ptes,
u64 __iomem *slots, uint num_pages,
int is_simple_mapping)
{
int i;
/*
* For each page table entry and corresponding entry in the device's
* address translation table:
*/
for (i = 0; i < num_pages; i++) {
/* release the address from the device, */
if (is_simple_mapping ||
GET(FLAGS_STATUS, ptes[i].flags) == PTE_INUSE) {
writeq(0, &slots[i]);
} else {
((u64 __force *)slots)[i] = 0;
/* sync above PTE update before updating mappings */
wmb();
}
/* release the address from the driver, */
if (GET(FLAGS_STATUS, ptes[i].flags) == PTE_INUSE) {
if (ptes[i].page && ptes[i].dma_addr) {
dma_unmap_page(pg_tbl->device, ptes[i].dma_addr, PAGE_SIZE,
GET(FLAGS_DMA_DIRECTION, ptes[i].flags));
}
if (gasket_release_page(ptes[i].page))
--pg_tbl->num_active_pages;
}
/* and clear the PTE. */
memset(&ptes[i], 0, sizeof(struct gasket_page_table_entry));
}
}
/*
* Unmap and release pages mapped to simple addresses.
* The page table mutex must be held by the caller.
*/
static void gasket_unmap_simple_pages(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
uint slot = gasket_simple_page_idx(pg_tbl, dev_addr);
gasket_perform_unmapping(pg_tbl, pg_tbl->entries + slot,
pg_tbl->base_slot + slot, num_pages, 1);
}
/*
* Unmap and release buffers to extended addresses.
* The page table mutex must be held by the caller.
*/
static void gasket_unmap_extended_pages(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
uint slot_idx, remain, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot_base;
remain = num_pages;
slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
/* TODO: Add check to ensure pte remains valid? */
len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
if (GET(FLAGS_STATUS, pte->flags) == PTE_INUSE) {
slot_base = (u64 __iomem *)(page_address(pte->page) +
pte->offset);
gasket_perform_unmapping(pg_tbl,
pte->sublevel + slot_idx,
slot_base + slot_idx, len, 0);
}
remain -= len;
slot_idx = 0;
pte++;
}
}
/* Evaluates to nonzero if the specified virtual address is simple. */
static inline bool gasket_addr_is_simple(struct gasket_page_table *pg_tbl,
u64 addr)
{
return !((addr) & (pg_tbl)->extended_flag);
}
/*
* Convert (simple, page, offset) into a device address.
* Examples:
* Simple page 0, offset 32:
* Input (1, 0, 32), Output 0x20
* Simple page 1000, offset 511:
* Input (1, 1000, 511), Output 0x3E81FF
* Extended page 0, offset 32:
* Input (0, 0, 32), Output 0x8000000020
* Extended page 1000, offset 511:
* Input (0, 1000, 511), Output 0x8003E81FF
*/
static ulong gasket_components_to_dev_address(struct gasket_page_table *pg_tbl,
int is_simple, uint page_index,
uint offset)
{
ulong dev_addr = (page_index << GASKET_SIMPLE_PAGE_SHIFT) | offset;
return is_simple ? dev_addr : (pg_tbl->extended_flag | dev_addr);
}
/*
* Validity checking for simple addresses.
*
* Verify that address translation commutes (from address to/from page + offset)
* and that the requested page range starts and ends within the set of
* currently-partitioned simple pages.
*/
static bool gasket_is_simple_dev_addr_bad(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
ulong page_offset = dev_addr & (PAGE_SIZE - 1);
ulong page_index =
(dev_addr / PAGE_SIZE) & (pg_tbl->config.total_entries - 1);
if (gasket_components_to_dev_address(pg_tbl, 1, page_index,
page_offset) != dev_addr) {
dev_err(pg_tbl->device, "address is invalid, 0x%llX\n",
dev_addr);
return true;
}
if (page_index >= pg_tbl->num_simple_entries) {
dev_err(pg_tbl->device,
"starting slot at %lu is too large, max is < %u\n",
page_index, pg_tbl->num_simple_entries);
return true;
}
if (page_index + num_pages > pg_tbl->num_simple_entries) {
dev_err(pg_tbl->device,
"ending slot at %lu is too large, max is <= %u\n",
page_index + num_pages, pg_tbl->num_simple_entries);
return true;
}
return false;
}
/*
* Validity checking for extended addresses.
*
* Verify that address translation commutes (from address to/from page +
* offset) and that the requested page range starts and ends within the set of
* currently-partitioned extended pages.
*/
static bool gasket_is_extended_dev_addr_bad(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
/* Starting byte index of dev_addr into the first mapped page */
ulong page_offset = dev_addr & (PAGE_SIZE - 1);
ulong page_global_idx, page_lvl0_idx;
ulong num_lvl0_pages;
u64 addr;
/* check if the device address is out of bound */
addr = dev_addr & ~((pg_tbl)->extended_flag);
if (addr >> (GASKET_EXTENDED_LVL0_WIDTH + GASKET_EXTENDED_LVL0_SHIFT)) {
dev_err(pg_tbl->device, "device address out of bounds: 0x%llx\n",
dev_addr);
return true;
}
/* Find the starting sub-page index in the space of all sub-pages. */
page_global_idx = (dev_addr / PAGE_SIZE) &
(pg_tbl->config.total_entries * GASKET_PAGES_PER_SUBTABLE - 1);
/* Find the starting level 0 index. */
page_lvl0_idx = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
/* Get the count of affected level 0 pages. */
num_lvl0_pages = (num_pages + GASKET_PAGES_PER_SUBTABLE - 1) /
GASKET_PAGES_PER_SUBTABLE;
if (gasket_components_to_dev_address(pg_tbl, 0, page_global_idx,
page_offset) != dev_addr) {
dev_err(pg_tbl->device, "address is invalid: 0x%llx\n",
dev_addr);
return true;
}
if (page_lvl0_idx >= pg_tbl->num_extended_entries) {
dev_err(pg_tbl->device,
"starting level 0 slot at %lu is too large, max is < "
"%u\n", page_lvl0_idx, pg_tbl->num_extended_entries);
return true;
}
if (page_lvl0_idx + num_lvl0_pages > pg_tbl->num_extended_entries) {
dev_err(pg_tbl->device,
"ending level 0 slot at %lu is too large, max is <= %u\n",
page_lvl0_idx + num_lvl0_pages,
pg_tbl->num_extended_entries);
return true;
}
return false;
}
/*
* Non-locking entry to unmapping routines.
* The page table mutex must be held by the caller.
*/
static void gasket_page_table_unmap_nolock(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_pages)
{
if (!num_pages)
return;
if (gasket_addr_is_simple(pg_tbl, dev_addr))
gasket_unmap_simple_pages(pg_tbl, dev_addr, num_pages);
else
gasket_unmap_extended_pages(pg_tbl, dev_addr, num_pages);
}
/*
* Allocate and map pages to simple addresses.
* If there is an error, no pages are mapped.
*/
static int gasket_map_simple_pages(struct gasket_page_table *pg_tbl,
ulong host_addr, ulong dev_addr,
uint num_pages, u32 flags)
{
int ret;
uint slot_idx = gasket_simple_page_idx(pg_tbl, dev_addr);
ret = gasket_alloc_simple_entries(pg_tbl, dev_addr, num_pages);
if (ret) {
dev_err(pg_tbl->device,
"page table slots %u (@ 0x%llx) to %u are not available\n",
slot_idx, dev_addr, slot_idx + num_pages - 1);
return ret;
}
ret = gasket_perform_mapping(pg_tbl, pg_tbl->entries + slot_idx,
pg_tbl->base_slot + slot_idx, host_addr,
num_pages, flags, 1);
if (ret) {
gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
dev_err(pg_tbl->device, "gasket_perform_mapping %d\n", ret);
}
return ret;
}
/*
* Allocate a second level page table.
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_extended_subtable(struct gasket_page_table *pg_tbl,
struct gasket_page_table_entry *pte,
u64 __iomem *slot)
{
ulong page_addr, subtable_bytes;
dma_addr_t dma_addr;
/* XXX FIX ME XXX this is inefficient for non-4K page sizes */
/* GFP_DMA flag must be passed to architectures for which
* part of the memory range is not considered DMA'able.
* This seems to be the case for Juno board with 4.5.0 Linaro kernel
*/
page_addr = get_zeroed_page(GFP_KERNEL | GFP_DMA);
if (!page_addr)
return -ENOMEM;
pte->page = virt_to_page((void *)page_addr);
pte->offset = 0;
subtable_bytes = sizeof(struct gasket_page_table_entry) *
GASKET_PAGES_PER_SUBTABLE;
pte->sublevel = vzalloc(subtable_bytes);
if (!pte->sublevel) {
free_page(page_addr);
memset(pte, 0, sizeof(struct gasket_page_table_entry));
return -ENOMEM;
}
/* Map the page into DMA space. */
pte->dma_addr = dma_map_page(pg_tbl->device, pte->page, 0, PAGE_SIZE,
DMA_TO_DEVICE);
if (dma_mapping_error(pg_tbl->device, pte->dma_addr)) {
dev_dbg(pg_tbl->device,
"%s -> fail to map page %llx "
"[pfn %p phys %p]\n",
__func__,
(unsigned long long)pte->dma_addr,
(void *)page_to_pfn(pte->page),
(void *)page_to_phys(pte->page));
/* clean up */
free_page(page_addr);
vfree(pte->sublevel);
memset(pte, 0, sizeof(struct gasket_page_table_entry));
return -ENOMEM;
}
/* make the addresses available to the device */
dma_addr = (pte->dma_addr + pte->offset) | GASKET_VALID_SLOT_FLAG;
writeq(dma_addr, slot);
pte->flags = SET(FLAGS_STATUS, pte->flags, PTE_INUSE);
return 0;
}
/*
* Allocate slots in an extended page table. Check to see if a range of page
* table slots are available. If necessary, memory is allocated for second level
* page tables.
*
* Note that memory for second level page tables is allocated as needed, but
* that memory is only freed on the final close of the device file, when the
* page tables are repartitioned, or the the device is removed. If there is an
* error or if the full range of slots is not available, any memory
* allocated for second level page tables remains allocated until final close,
* repartition, or device removal.
*
* The page table mutex must be held by the caller.
*/
static int gasket_alloc_extended_entries(struct gasket_page_table *pg_tbl,
u64 dev_addr, uint num_entries)
{
int ret = 0;
uint remain, subtable_slot_idx, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot;
remain = num_entries;
subtable_slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
slot = pg_tbl->base_slot + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
len = min(remain,
GASKET_PAGES_PER_SUBTABLE - subtable_slot_idx);
if (GET(FLAGS_STATUS, pte->flags) == PTE_FREE) {
ret = gasket_alloc_extended_subtable(pg_tbl, pte, slot);
if (ret) {
dev_err(pg_tbl->device,
"no memory for extended addr subtable\n");
return ret;
}
} else {
if (!gasket_is_pte_range_free(pte->sublevel +
subtable_slot_idx, len))
return -EBUSY;
}
remain -= len;
subtable_slot_idx = 0;
pte++;
slot++;
}
return 0;
}
/*
* gasket_map_extended_pages - Get and map buffers to extended addresses.
* If there is an error, no pages are mapped.
*/
static int gasket_map_extended_pages(struct gasket_page_table *pg_tbl,
ulong host_addr, ulong dev_addr,
uint num_pages, u32 flags)
{
int ret;
ulong dev_addr_end;
uint slot_idx, remain, len;
struct gasket_page_table_entry *pte;
u64 __iomem *slot_base;
ret = gasket_alloc_extended_entries(pg_tbl, dev_addr, num_pages);
if (ret) {
dev_addr_end = dev_addr + (num_pages / PAGE_SIZE) - 1;
dev_err(pg_tbl->device,
"page table slots (%lu,%llu) (@ 0x%lx) to (%lu,%lu) are "
"not available\n",
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr),
dev_addr,
gasket_extended_lvl1_page_idx(pg_tbl, dev_addr),
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr_end),
gasket_extended_lvl1_page_idx(pg_tbl, dev_addr_end));
return ret;
}
remain = num_pages;
slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pg_tbl->entries + pg_tbl->num_simple_entries +
gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
while (remain > 0) {
len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
slot_base =
(u64 __iomem *)(page_address(pte->page) + pte->offset);
ret = gasket_perform_mapping(pg_tbl, pte->sublevel + slot_idx,
slot_base + slot_idx, host_addr,
len, flags, 0);
if (ret) {
gasket_page_table_unmap_nolock(pg_tbl, dev_addr,
num_pages);
return ret;
}
remain -= len;
slot_idx = 0;
pte++;
host_addr += len * PAGE_SIZE;
}
return 0;
}
/*
* See gasket_page_table.h for general description.
*
* gasket_page_table_map calls either gasket_map_simple_pages() or
* gasket_map_extended_pages() to actually perform the mapping.
*
* The page table mutex is held for the entire operation.
*/
int gasket_page_table_map(struct gasket_page_table *pg_tbl, ulong host_addr,
ulong dev_addr, uint num_pages, u32 flags)
{
int ret;
if (!num_pages)
return 0;
mutex_lock(&pg_tbl->mutex);
if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
ret = gasket_map_simple_pages(pg_tbl, host_addr, dev_addr,
num_pages, flags);
} else {
ret = gasket_map_extended_pages(pg_tbl, host_addr, dev_addr,
num_pages, flags);
}
mutex_unlock(&pg_tbl->mutex);
dev_dbg(pg_tbl->device,
"%s done: ha %llx daddr %llx num %d, flags %x ret %d\n",
__func__, (unsigned long long)host_addr,
(unsigned long long)dev_addr, num_pages, flags, ret);
return ret;
}
EXPORT_SYMBOL(gasket_page_table_map);
/*
* See gasket_page_table.h for general description.
*
* gasket_page_table_unmap takes the page table lock and calls either
* gasket_unmap_simple_pages() or gasket_unmap_extended_pages() to
* actually unmap the pages from device space.
*
* The page table mutex is held for the entire operation.
*/
void gasket_page_table_unmap(struct gasket_page_table *pg_tbl, u64 dev_addr,
uint num_pages)
{
if (!num_pages)
return;
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
mutex_unlock(&pg_tbl->mutex);
}
EXPORT_SYMBOL(gasket_page_table_unmap);
static void gasket_page_table_unmap_all_nolock(struct gasket_page_table *pg_tbl)
{
gasket_unmap_simple_pages(pg_tbl,
gasket_components_to_dev_address(pg_tbl, 1, 0,
0),
pg_tbl->num_simple_entries);
gasket_unmap_extended_pages(pg_tbl,
gasket_components_to_dev_address(pg_tbl, 0,
0, 0),
pg_tbl->num_extended_entries *
GASKET_PAGES_PER_SUBTABLE);
}
/* See gasket_page_table.h for description. */
void gasket_page_table_unmap_all(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_all_nolock(pg_tbl);
mutex_unlock(&pg_tbl->mutex);
}
EXPORT_SYMBOL(gasket_page_table_unmap_all);
/* See gasket_page_table.h for description. */
void gasket_page_table_reset(struct gasket_page_table *pg_tbl)
{
mutex_lock(&pg_tbl->mutex);
gasket_page_table_unmap_all_nolock(pg_tbl);
writeq(pg_tbl->config.total_entries, pg_tbl->extended_offset_reg);
mutex_unlock(&pg_tbl->mutex);
}
/* See gasket_page_table.h for description. */
int gasket_page_table_lookup_page(
struct gasket_page_table *pg_tbl, u64 dev_addr, struct page **ppage,
ulong *poffset)
{
uint page_num;
struct gasket_page_table_entry *pte;
mutex_lock(&pg_tbl->mutex);
if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
page_num = gasket_simple_page_idx(pg_tbl, dev_addr);
if (page_num >= pg_tbl->num_simple_entries)
goto fail;
pte = pg_tbl->entries + page_num;
if (GET(FLAGS_STATUS, pte->flags) != PTE_INUSE)
goto fail;
} else {
/* Find the level 0 entry, */
page_num = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
if (page_num >= pg_tbl->num_extended_entries)
goto fail;
pte = pg_tbl->entries + pg_tbl->num_simple_entries + page_num;
if (GET(FLAGS_STATUS, pte->flags) != PTE_INUSE)
goto fail;
/* and its contained level 1 entry. */
page_num = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
pte = pte->sublevel + page_num;
if (GET(FLAGS_STATUS, pte->flags) != PTE_INUSE)
goto fail;
}
*ppage = pte->page;
*poffset = pte->offset;
mutex_unlock(&pg_tbl->mutex);
return 0;
fail:
*ppage = NULL;
*poffset = 0;
mutex_unlock(&pg_tbl->mutex);
return -EINVAL;
}
/* See gasket_page_table.h for description. */
bool gasket_page_table_are_addrs_bad(
struct gasket_page_table *pg_tbl, ulong host_addr, ulong dev_addr,
ulong bytes)
{
if (host_addr & (PAGE_SIZE - 1)) {
dev_err(pg_tbl->device,
"host mapping address 0x%lx must be page aligned\n",
host_addr);
return true;
}
return gasket_page_table_is_dev_addr_bad(pg_tbl, dev_addr, bytes);
}
EXPORT_SYMBOL(gasket_page_table_are_addrs_bad);
/* See gasket_page_table.h for description. */
bool gasket_page_table_is_dev_addr_bad(
struct gasket_page_table *pg_tbl, u64 dev_addr, ulong bytes)
{
uint num_pages = bytes / PAGE_SIZE;
if (bytes & (PAGE_SIZE - 1)) {
dev_err(pg_tbl->device,
"mapping size 0x%lX must be page aligned\n", bytes);
return true;
}
if (num_pages == 0) {
dev_err(pg_tbl->device,
"requested mapping is less than one page: %lu / %lu\n",
bytes, PAGE_SIZE);
return true;
}
if (gasket_addr_is_simple(pg_tbl, dev_addr))
return gasket_is_simple_dev_addr_bad(pg_tbl, dev_addr,
num_pages);
return gasket_is_extended_dev_addr_bad(pg_tbl, dev_addr, num_pages);
}
EXPORT_SYMBOL(gasket_page_table_is_dev_addr_bad);
/* See gasket_page_table.h for description. */
uint gasket_page_table_max_size(struct gasket_page_table *page_table)
{
if (!page_table)
return 0;
return page_table->config.total_entries;
}
EXPORT_SYMBOL(gasket_page_table_max_size);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_entries(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_simple_entries + pg_tbl->num_extended_entries;
}
EXPORT_SYMBOL(gasket_page_table_num_entries);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_simple_entries(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_simple_entries;
}
EXPORT_SYMBOL(gasket_page_table_num_simple_entries);
/* See gasket_page_table.h for description. */
uint gasket_page_table_num_active_pages(struct gasket_page_table *pg_tbl)
{
if (!pg_tbl)
return 0;
return pg_tbl->num_active_pages;
}
EXPORT_SYMBOL(gasket_page_table_num_active_pages);
/* See gasket_page_table.h */
int gasket_page_table_system_status(struct gasket_page_table *page_table)
{
if (!page_table)
return GASKET_STATUS_LAMED;
if (gasket_page_table_num_entries(page_table) == 0) {
dev_dbg(page_table->device, "Page table size is 0\n");
return GASKET_STATUS_LAMED;
}
return GASKET_STATUS_ALIVE;
}
/* Record the host_addr to coherent dma memory mapping. */
int gasket_set_user_virt(
struct gasket_dev *gasket_dev, u64 size, dma_addr_t dma_address,
ulong vma)
{
int j;
struct gasket_page_table *pg_tbl;
unsigned int num_pages = size / PAGE_SIZE;
/*
* TODO: for future chipset, better handling of the case where multiple
* page tables are supported on a given device
*/
pg_tbl = gasket_dev->page_table[0];
if (!pg_tbl) {
dev_dbg(gasket_dev->dev, "%s: invalid page table index\n",
__func__);
return 0;
}
for (j = 0; j < num_pages; j++) {
pg_tbl->coherent_pages[j].user_virt =
(u64)vma + j * PAGE_SIZE;
}
return 0;
}
/* Allocate a block of coherent memory. */
int gasket_alloc_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
dma_addr_t *dma_address, u64 index)
{
dma_addr_t handle;
void *mem;
int j;
unsigned int num_pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
const struct gasket_driver_desc *driver_desc =
gasket_get_driver_desc(gasket_dev);
if (!gasket_dev->page_table[index])
return -EFAULT;
if (num_pages == 0)
return -EINVAL;
mem = dma_alloc_coherent(gasket_get_device(gasket_dev),
num_pages * PAGE_SIZE, &handle, GFP_KERNEL);
if (!mem)
goto nomem;
gasket_dev->page_table[index]->num_coherent_pages = num_pages;
/* allocate the physical memory block */
gasket_dev->page_table[index]->coherent_pages =
kcalloc(num_pages, sizeof(struct gasket_coherent_page_entry),
GFP_KERNEL);
if (!gasket_dev->page_table[index]->coherent_pages)
goto nomem;
gasket_dev->coherent_buffer.length_bytes =
PAGE_SIZE * (num_pages);
gasket_dev->coherent_buffer.phys_base = handle;
gasket_dev->coherent_buffer.virt_base = mem;
*dma_address = driver_desc->coherent_buffer_description.base;
for (j = 0; j < num_pages; j++) {
gasket_dev->page_table[index]->coherent_pages[j].paddr =
handle + j * PAGE_SIZE;
gasket_dev->page_table[index]->coherent_pages[j].kernel_virt =
(dma_addr_t)mem + j * PAGE_SIZE;
}
return 0;
nomem:
if (mem) {
dma_free_coherent(gasket_get_device(gasket_dev),
num_pages * PAGE_SIZE, mem, handle);
gasket_dev->coherent_buffer.length_bytes = 0;
gasket_dev->coherent_buffer.virt_base = NULL;
gasket_dev->coherent_buffer.phys_base = 0;
}
kfree(gasket_dev->page_table[index]->coherent_pages);
gasket_dev->page_table[index]->coherent_pages = NULL;
gasket_dev->page_table[index]->num_coherent_pages = 0;
return -ENOMEM;
}
/* Free a block of coherent memory. */
int gasket_free_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
dma_addr_t dma_address, u64 index)
{
const struct gasket_driver_desc *driver_desc;
if (!gasket_dev->page_table[index])
return -EFAULT;
driver_desc = gasket_get_driver_desc(gasket_dev);
if (driver_desc->coherent_buffer_description.base != dma_address)
return -EADDRNOTAVAIL;
gasket_free_coherent_memory_all(gasket_dev, index);
return 0;
}
/* Release all coherent memory. */
void gasket_free_coherent_memory_all(
struct gasket_dev *gasket_dev, u64 index)
{
if (!gasket_dev->page_table[index])
return;
if (gasket_dev->coherent_buffer.length_bytes) {
dma_free_coherent(gasket_get_device(gasket_dev),
gasket_dev->coherent_buffer.length_bytes,
gasket_dev->coherent_buffer.virt_base,
gasket_dev->coherent_buffer.phys_base);
gasket_dev->coherent_buffer.length_bytes = 0;
gasket_dev->coherent_buffer.virt_base = NULL;
gasket_dev->coherent_buffer.phys_base = 0;
}
kfree(gasket_dev->page_table[index]->coherent_pages);
gasket_dev->page_table[index]->coherent_pages = NULL;
gasket_dev->page_table[index]->num_coherent_pages = 0;
}